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Abstract

For predictions of plastic buckling, and especially postbuckling behaviour and imperfection sensitivity it is
desirable to have a plasticity theory that combines some of the desired characteristics of both the ¯ow and

deformation theories of plasticity. For this purpose a way to include unloading within a deformation theory of
plasticity is given that preserves the incremental continuity of the resulting constitutive equations. This can only be
achieved by allowing plastic deformations to occur within the yield surface. Such plastic deformations are controlled

by a parameter m, which describes how rapidly the possibility of such plastic deformations disappears as the stress
state moves away from the yield surface. A ®nite strain version of the formulation is given. The approach can be
implemented with minimal changes to an elastic predictor ± radial return algorithm for the ¯ow theory of plasticity,

by changing the elastic predictor phase only. For tests involving thick-walled �D=t110� cylinders with known
axisymmetric imperfections under axial compression, this new deformation theory overpredicted the concertina
wrinkling type deformations for a given amount of applied axial shortening, whereas the ¯ow theory underpredicted
these wrinkling deformations in some cases. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Motivation

It is well known that for problems of plastic buckling, the ¯ow theory of plasticity can lead to

calculated bifurcation buckling loads that are too high, whereas the deformation theory leads to

bifurcation loads that are more in line with the experimental observations (Hutchinson, 1974; Bushnell,

1982; El-Ghazaly and Sherbourne, 1985; Giezen, 1988; Blachut et al., 1996). When examined in terms of

strains at bifurcation the ¯ow/deformation theory di�erences, can become quite large, as shown in Fig. 1,
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based on Batterman's result (Batterman, 1965) for axisymmetric bifurcation buckling of a cylinder under
axial load. In a number of practical applications it is not so much the buckling load, that is of
importance, but rather the deformation capacity. For instance for reeling of pipelines one is interested in
how far one can bend a pipe without wrinkling it. Also straight, high-temperature ¯owlines may wrinkle
under axial compression, due to thermal strains large enough to cause yielding of the material, and the
potential for the plastic deformations to concentrate in weaker areas of the pipe, where the buckling
load may be exceeded. Therefore, errors in predictions such as those in Fig. 1, are not acceptable.

The reason for the ¯ow/deformation theory di�erences is the sudden change in direction of the stress
path at bifurcation buckling. Indeed for a broad range of plastic bifurcation problems, the stress path is
normal to the yield surface, but upon bifurcation buckling it changes to one tangent to the yield surface
(Hutchinson, 1974)1. For such non-proportional paths the ¯ow and deformation theories predict
di�erent response of the material. This is illustrated in Fig. 2 by considering a loading path OABC in
deviatoric stress space. The corresponding strain path is OABC for the ¯ow theory of plasticity, but
OABC' for the deformation theory. On the portion BC of the loading path, which is tangent to the
yield surface, the behaviour is elastic for the ¯ow theory but inelastic for the deformation theory. This is
because the deformation theory does not include the path dependence, so that loading path OABC must
produce the same ®nal strain as a direct loading path OC. As a result for the deformation theory, a
loading path tangent to the yield surface is associated with a ``rotation'' of the plastic strain tensor

Fig. 1. Bifurcation strains for axisymmetric bucking of cylinders under axial compression based on the small-strain solution of Bat-

terman (Batterman, 1965). (Poisson's ratio is 0.3, and stress±strain curve is de®ned in Eq. (13).)

1 This applies for the neutral loading point from Hill's theory of bifurcation in the plastic range as described for instance in

(Hutchinson, 1974).
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leading to the signi®cantly more compliant material response. Indeed, the incremental moduli in the
direction tangent to the yield surface are the elastic values for the ¯ow theory, but the secant values for
the deformation theory. It is this extra compliance for the deformation theory that leads to the better
agreement with experimental results.

Of course, it is mainly the bifurcation buckling predictions for which the danger of using the ¯ow
theory is well-known. However, by choosing a su�ciently small imperfection buckling can be made to
initiate arbitrarily close to the bifurcation point. Therefore, when the bifurcation buckling prediction is
too high, the buckling load for the imperfect system will also be too high, for a su�ciently small
imperfection. Granted that the phrase ``su�ciently small'' is here applied in a mathematical sense. From
an engineering point of view imperfections may never be ``su�ciently small''. Nevertheless, the di�erence
between the bifurcation predictions for the ¯ow and deformation can be so large, that the prudent
designer does well not to rely only on the ¯ow theory, and its potentially unconservative predictions,
even when some imperfections are involved.

The deformation theory also has some drawbacks. Although it results in generally better bifurcation
buckling predictions, a true deformation theory does not account for elastic unloading of the material,
since path dependent e�ects are not included. This is important, because of the known in¯uence of
elastic unloading on the postbifurcation behaviour. It is known that in almost all cases2 involving
bifurcation in the plastic range, elastic unloading begins immediately after bifurcation (Hutchinson,
1974), and it is for this reason that the bifurcated branches involve an initially increasing load. A true

Fig. 2. Loading paths and yield surface locations for J2 ¯ow and deformation theories of plasticity. For a given stress path OABC,

the strain path is OABC for the ¯ow theory, but it is OABC' for the deformation theory.

2 In Hutchinson's words (Hutchinson, 1974) an example could be ``contrived'' in which this is not the case. Such an example

might be a Shanley column in which one of the springs is nonlinear elastic, but the other is elasto-plastic with the same stress±

strain curve for plastic loading.
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deformation theory will not predict this phenomenon. In view of the connection between postbifurcation
behaviour and imperfection sensitivity, it is doubtful whether such a true deformation theory would give
the right picture of the imperfection sensitivity of an elasto-plastic structure.

Unloading can be included within a deformation theory of plasticity, but this leads to a constitutive
law involving discontinuities and/or ambiguities in the response. In particular the resulting incremental
stress±strain relations become discontinuous at the loading/unloading boundary. This is not only
physically unrealistic, but can lead to severe convergence di�culties in numerical computations.

This paper provides an approach to overcome the above-described drawbacks of both the ¯ow and
deformation theories. It is by no means the only way out of the dilemma, but it appears to be the
simplest one available to date.

The resulting Incrementally Continuous deformation theory with Unloading (ICU deformation
theory) can be implemented with minimal changes to an algorithm based on the standard ¯ow theory.
Furthermore, it has the following attributes:

(i) For proportional loading, unloading and reverse loading, it coincides with the ¯ow theory of
plasticity.
(ii) Bifurcation buckling predictions coincide with those of the deformation theory of plasticity for
cases when the prebuckling solution involves proportional loading.
(iii) The theory is incrementally continuous and bilinear, and, as a result, no extra di�culties in the
numerical solution procedures are introduced.

2. Background

The above-described drawbacks of both the ¯ow and deformation theories have not only long been
recognised, but a considerable amount of work has focused on ®nding a way out of this dilemma. A
clear argument countering the objections to the deformation theory of plasticity has been put forward
by Sanders (1954). He shows that if the von Mises yield surface is replaced by a number of planar yield
surfaces that harden independently, then under certain restrictions the behaviour is path independent,
and, as a result, the applicable incremental moduli are those of the deformation theory. Thus, Sanders
created a physically more realistic model with the ``right'' incremental moduli for total plastic loading.
(Total plastic loading occurs when yielding occurs on all active slip surfaces for which an active slip
plane is one that is in contact with the current stress state.) This model is appealing because of its
simplicity and the natural way in which it resolves the drawbacks of both the ¯ow and deformation
theories. However, in view of the large number of yield surfaces involved, it is not practical for ®nite
element computations.

An approach more suitable for ®nite element computations is the ``phenomenological corner theory''
of Christofersen and Hutchinson (1979). In this theory the current stress state is at the vertex of a cone
pushed out from the yield surface during strain hardening. For stress increments that return into this
cone, the behaviour is elastic. Stress increments involving plastic loading may fall either in a total
loading cone, where the incremental moduli of the deformation theory of plasticity apply, or in a
transition region between the total loading and elastic unloading cones. For this transition region, the
incremental moduli are de®ned by means of a transition function. This corner theory overcomes the
above-described drawbacks of both the ¯ow and the deformation theories, but not without a price: the
resulting theory is more complicated than the standard ¯ow and deformation theories. The stress±strain
relation becomes incrementally nonlinear (rather than incrementally bilinear, as for standard plasticity
theories), which can lead to convergence di�culties (Giezen, 1988). Finally experimental data to support
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a clear de®nition of the transition function are not available and di�cult to obtain (Hecker, 1976).
Although this corner theory has seen a number of applications, mainly in the hands of researchers
(Needleman and Tvergaard, 1982; Tvergaard, 1983; Triantafyllidis, 1985; Giezen, 1988), it seems that
some of the di�culties associated with it have discouraged its more wide-spread use.

Despite the di�culties of the phenomenological corner theory, it does overcome the above-described
drawbacks of both the ¯ow and deformation theories. The intent here is not to present a competing
approach. The ICU deformation theory proposed herein is essentially a special case of the corner
theory, in which the corner in the yield surface becomes a needle, the total loading cone becomes a total
loading halfspace. However, as will be seen, the development and implementation of this ICU
deformation theory is much simpler than that of the corner theory.

3. Review of the deformation and ¯ow theories of plasticity

The intent of this review is not to reiterate very well known theories. Rather it is to present them in
such a form, that formulating the new ICU deformation theory becomes a trivial and obvious step.
Although in the form stated here, the standard results might not be instantly recognised, they are fully
equivalent to the formulation in (Hutchinson, 1973), which is also quoted in (Needleman and
Tvergaard, 1977), where it is attributed to unpublished work by B. Budiansky. This is based on a
generalisation of a small strain theory to ®nite strains in which the stress increment of the small strain
theory is replaced by the Jauman rate of the Kirchho� stress, and the strain increment of the small
strain theory becomes the rate of deformation tensor. Such generalisation to ®nite deformations is
applied to the small strain versions of both the ¯ow and the deformation theories. This does lead to
some path dependency in the elastic range (i.e. hypoelastic behaviour rather than hyperelastic
behaviour), but the degree of path dependency should be small as long as the elastic strains are small.
When the generalisation-to-®nite-strains procedure is applied to a path independent deformation theory
of plasticity, the resulting large strain deformation theory of plasticity can include more signi®cant path
dependence. Thus, when applied to a hyperelastic small-strain deformation theory of plasticity this
generalisation-to-®nite-strains approach will yield hypoelastic ®nite-strain deformation theory of
plasticity. Nevertheless, it is hypoelastic deformation theory of plasticity that is used as a starting point
here. According to Needleman and Tvergaard (1977) the path dependence of this theory only arises
when there is a change of the principal axes of deformation. (The same reference also provides a
hyperelastic version of the ®nite strain deformation theory of plasticity for incompressible materials,
which is not used here.)

The yield surface is de®ned via an equivalent von Mises uniaxial stress given by

Q �
������������
3

2
S:S,

r
S � T ÿ p1, p � 1

3
1:T �1�

where Q is the von Mises equivalent uniaxial stress, T is the Kircho� stress tensor, S is the deviatoric
part of the Kirchho� stress tensor, 1 is the unit two-tensor, and a colon (:) is used to indicate the scalar
product of 2nd-order tensors3. Elastic behaviour occurs within the yield surface, when

QRQ0�l� �2�

3 For an orthonormal coordinate system, this scalar product of tensors is simply the sum of the products of each component of

the tensors. More generally, for basis vectors gj, the scalar product of two tensors A � Aij gigj and B � Bxsij gigj is,

A:B � AijBij � AijgikgjlB
kl, in which gij � gi � gj are metric coe�cients, and summation over repeated indices is implied.
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where l is the equivalent uniaxial logarithmic plastic strain, and the function Q0�:� may be de®ned from
the results of a uniaxial coupon test4.

The incremental stress±strain relations for both the ¯ow and deformation theories are best described
by using a decomposition of the rate of deformation tensor into a volumetric component, one normal to
the yield surface, and one tangent to the yield surface, as follows:

D � D11�DRR� ÃD �3�
where D is the rate of deformation tensor, R is a tensor normal to the yield surface, given by

R � 3

2Q
S �4�

and

D1 � 1

3
1:D, DR � 2

3
R:D, ÃD � DÿD11ÿDRR �5�

The advantage of this decomposition is that the corresponding stress increments for both the ¯ow and
deformation theories can be written in a simple form. Speci®cally, for the ¯ow theory of plasticity, the
Jauman rate of the Kirchho� stress tensor can be written in the form,

T
r
� E

1ÿ 2n
D11� 2 GTDRR� 2G ÃD �6a�

For plastic loading, which occurs when Q � Q0�l� and DR > 0, and

T
r
� E

1ÿ 2n
D11� 2GDRR� 2G ÃD �6b�

for elastic unloading, which occurs when Q < Q0�l� or DR < 0: In Eqs. 6(a, b), E denotes Young's
modulus, n is Poisson's ratio,

G � E

2�1� n� �7�

is the shear modulus, the tangent shear modulus GT is de®ned by

1

GT
� 3

H
� 1

G
�8�

4 It can be shown by integration of the ®nite deformation constitutive equations in (Needleman and Tvergaard, 1977) for uniaxial

loading, that the true equivalent uniaxial stress as de®ned in Eq. (1) is given by Q � f �1� eeng�, where f is the nominal stress (force

divided by undeformed cross sectional area), and eeng is the engineering strain (change in length of the test section divided by unde-

formed length of the test section). The logarithmic plastic strain is given by, l � ln�1� eeng� ÿQ=E for a uniaxial tension test, and

by l � ÿln�1� eeng� ÿQ=E for a uniaxial compression test. With these results, a stress-strain relationship between f and eeng from a

uniaxial tension or compression test can readily be transformed into a relationship between Q and l: The most direct way of de®n-

ing the function Q � Q0�l� is by linear interpolation between points where the stresses and strains were recorded in the test. That

way one achieves an exact match of the test result for uniaxial loading. Another often-used possibility is the Ramberg±Osgood re-

lationship l � CQn, in which C and n are constant material parameters de®ning the strength and strain hardening characteristics of

the material.
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in which H � dQ0=dl is the plastic modulus (slope of the uniaxial true stress±logarithmic plastic strain
curve).

For the deformation theory the incremental relations may be written in the form,

T
r
� E

1ÿ 2n
D11� 2GT DRR� 2GS

ÃD �9�

where GS is a secant value of the shear modulus, de®ned in terms of a secant value of the plastic
modulus HS given by

1

GS
� 3

HS
� 1

G
, HS � Q0�l�

l
�10�

It is clear from Eqs. (5), (6a, b) and (9), that the decomposition of the rate of deformation tensor D
leads to components that are eigenvectors of the incremental stress±strain relations for all cases.
Furthermore, the applicable incremental moduli (eigenvalues) for each of the eigenspaces are as follows:

(i) For the volumetric component of the deformation rate, D1 1, the applicable incremental modulus
is always the elastic value E=�1ÿ 2n�:
(ii) For the component normal to the yield surface, DR R, the applicable incremental modulus is the
tangent value 2GT for the deformation theory, and for the ¯ow theory when plastic loading is
involved, and it is 2G for elastic unloading according to the ¯ow theory. Note that for the
deformation theory there is no distinction between elastic unloading and plastic loading. The
applicable modulus is 2GT in both cases.
(iii) For the component tangential to the yield surface, ÃD, the applicable incremental modulus is the
elastic value 2G for the ¯ow theory (no matter whether the increment involves plastic loading or not),
and it is the secant value, 2GS for the deformation theory.

One way to include elastic unloading in the deformation theory of plasticity would be to use the
incremental relations of the deformation theory (Eq. (9)) for plastic loading, and the elastic ones (Eq.
(6b)) for the elastic unloading. However, this leads to a discontinuity in the incremental stress±strain
relations, since the modulus in the direction tangent to the yield surface would jump from 2GS, when
some plastic loading is involved, to 2G, when the increment remains within the yield surface. Therefore,
a better way needs to be found to include elastic unloading in the context of a deformation theory.
Indeed continuity requires that the incremental modulus for the component tangential to the yield
surface be the same for loading and unloading.

4. The ICU deformation theory

From the preceding section it is clear in order to formulate a deformation theory including elastic
unloading, the incremental modulus for the direction tangent to the yield surface, must be the secant
value for both loading and unloading. This results in the following incremental relations,

T
r
� E

1ÿ 2n
d11� 2GT DRR� 2GS

ÃD g �11a�

when Q � Q0�l� and DR > 0, and
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T
r
� E

1ÿ 2n
d11� 2G DRR� 2GS

ÃD �11b�

when Q < Q0�l� or DR < 0:
The conditions under which Eqs. (11a, b) are applicable might be referred to as ``plastic loading'' and

``elastic unloading'', respectively, but this would be misleading, because such ``elastic unloading'' does
involve plastic straining associated with the rotation of the plastic strain tensor, since the secant rather
than the elastic value of the material modulus is used for the direction tangent to the yield surface.
Therefore, here the phrase ``total plastic loading'' is used when Eq. (11a) applies, and ``pseudo-elastic
unloading'' when Eq. (11b) applies. Such pseudo elastic unloading is only truly elastic if the stress
increment is normal to the yield surface.

The accumulated plastic strain parameter l for this ICU deformation theory, changes only during
total plastic loading, in which case its evolution is de®ned by the consistency condition Q � Q0�l�: As a
result l is a strictly increasing parameter, as in the ¯ow theory of plasticity.

Plastic deformation within the yield surface is governed by the secant shear modulus GS: The
de®nition of this quantity in Eqs. (11a, b) applies during total plastic loading, when Q � Q0�l�, but a
di�erent de®nition may be used within the yield surface (where Q < Q0�l�). Indeed to avoid an
irregularity in the constitutive relation at zero stress, the condition that GS � G must be satis®ed when
Q � 0: To achieve this a factor �Q0�l�=Q�m is applied to the value of the secant plastic modulus HS on
the yield surface, so that the expression for the secant shear modulus within the yield surface becomes,

1

GS
� 3l

Q0�l�
�

Q

Q0�l�
�m

� 1

G
�12�

where m is a material parameter that controls the unloading behaviour, or more speci®cally the amount
of plastic deformation within the yield surface. To avoid the singular behaviour at the origin m must be
greater than zero. For a large value of m, the ®rst term on the right-hand side of Eq. (12) rapidly
becomes very small as the stress state moves away from the yield surface, so that the behaviour then
becomes essentially elastic, and signi®cant plastic deformations can occur only very close to the yield
surface. On the other hand, for smaller m, plasticity e�ects can still be signi®cant at a larger distance
from the yield surface. A reasonable value is m � 10: In any case, initially, before any plastic
deformation has taken place, l � 0, so that the behaviour then is fully elastic at all points within the
initial yield surface no matter what the value of m. Also, if no elastic unloading occurs, then the results
will be independent of the material parameter m.

The implementation of this ICU deformation theory of plasticity can proceed in exactly the same way
as that of the ¯ow theory of plasticity using an elastic predictor ± radial return type algorithm, except
that in this case it becomes a pseudo-elastic predictor±radial return algorithm, with the pseudo-elastic
predictor being calculated based on elastic incremental moduli for the direction normal to the yield
surface, but secant incremental moduli for the direction tangent to the yield surface. Details are given in
Appendix A.

5. Example: axisymmetric buckling of a cylinder under axial compression

The problem of plastic buckling of cylinders under axial stresses has been dealt with quite extensively
in the literature (Batterman, 1965; Bushnell, 1982; Tvergaard, 1983; Giezen, 1988; Teng, 1994;
Mikkelsen, 1995; Blachut et al., 1996; Mikkelsen, 1996). Indeed, it is known that axisymmetry-breaking
bifurcations and/or secondary bifurcations can occur (Tvergaard, 1983; Mikkelsen, 1995). However, here
the intent is only to illustrate di�erences between the ¯ow and ICU deformation theory, and the
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corresponding imperfection sensitivity in each case. Therefore, attention is focused only on the simplest
case of axisymmetric behaviour. Even though axisymmetry-breaking buckling modes are ignored here,
the example still serves its intended illustrative purpose.

The properties of the cylinder are taken to be: D=t � 20 for the outer-diameter-to-thickness ratio, n �
0:3 for Poisson's ratio, and a stress±strain curve de®ned by the Ramberg±Osgood type relation,

l � 3

7

Q

E

�
Q

Qref

�nÿ1
�13�

where

l is the equivalent uniaxial logarithmic plastic strain, as de®ned previously,
E is Young's modulus, taken as E � 207 GPa,
Q is the true stress, as de®ned previously,
n is a material parameter, taken as n � 7:5, and
Qref is a yield stress parameter taken as Qref � 290:72 MPa.

These material parameters given imply a stress and strain at ultimate that is typical of an API 5L grade
X65 carbon steel pipe, but the Ramberg±Osgood stress±strain curve used here does not include the
plateau that is often observed on for seamless carbon steel pipes.

For the perfect tube, a ®nite strain version of Batterman's result (Peek, 1999) yields a bifurcation
strain of 2.84%, using the deformation theory, as described here. (The bifurcation strains are the same
for the ICU and true deformation theories.) This analytical solution based on thin shell theory also
provides a critical half wavelength for the wrinkles of 5.55 t, where t is the wall thickness. The
bifurcation analysis is also performed by modelling a section of the cylinder with axisymmetric ®nite
elements. The length of the section modelled was taken as the critical half wavelength of the wrinkles
from the analytical solution, and symmetry boundary conditions were used at each end, since these are
the conditions that are satis®ed by the analytical solution. The mesh consists of 7 � 100 four-noded
axisymmetric elements with reduced integration and hourglass control according to the approach in
(Belytschko and Ong, 1984). On this basis it was found that the axial shortening at bifurcation was
2.68%. This is about 6% lower than that from the analytical solution, which is not unreasonable in
view of (i) discretisation errors arising from using seven elements across the thickness5, and (ii) errors
introduced by the thin shell theory approximation by which shear deformations are neglected.

The bifurcation strains could also be computed based on the ¯ow theory, but this typically gives very
high bifurcation strains. Indeed, the ®nite element solution based on the ¯ow theory was carried to an
axial shortening of over 50% without any bifurcation being found6. (The bifurcation strains for the
®nite deformation ¯ow theory are even larger than those for the corresponding small strain theory
shown in Fig. 1).

The ®nite element analysis is also performed for pipes with a geometric imperfection in the same
shape as the bifurcation buckling mode. This involves a sinusoidal variation of radial displacements
along the length of the pipe with the same half wavelength of 5.55 t, obtained from the analytical ®nite-
strain wrinkling solution. The size of the imperfection is described by an amplitude parameter a, which

5 Due to the reduced integration of the elements used, with seven elements across the thickness, the apparent shell section ¯exural

rigidity that is 2% below the exact value.
6 The bifurcation point is found by ®rst performing the analysis with additional constraints imposed to prevent the development

of wrinkling type deformations, and then releasing these constraints to perform a stability check on the tangent sti�ness matrix of

the released system. Without these constrains it was found (at least for the ¯ow theory) that small numerical truncation errors tend

to grow close to exponentially until ®nally limit point behaviour rather than bifurcation behaviour is encountered.
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represents the maximum change in radius from the mean radius. (Thus the di�erence between maximum
and minimum diameter is 4a.) Typical axial load-shortening relations for di�erent sizes of the
imperfection are shown in Fig. 3 for the ICU deformation theory, and in Fig. 4 for the ¯ow theory.
Therein the axial load is expressed as a nominal stress, de®ned as the axial force divided by the
undeformed cross-sectional area.

In Figs. 3 and 4, the curves labelled ``Uniax Compr'' are the principal solution. That is they represent
the load-shortening curve for the perfect cylinder when no buckling deformations are allowed to
develop.

For the ICU deformation theory (Fig. 3), the solutions for the imperfect system are seen to converge
as the imperfection becomes very small. They converge to the bifurcated solution for the perfect system.
This bifurcated solution involves initially increasing load. Such behaviour is associated with elastic
unloading, and coincides with the prediction from Hill's general theory of bifurcation in the plastic
range (Hutchinson, 1974). Indeed, Hill's general bifurcation theory is directly applicable to the ICU
deformation theory, just as it is to the ¯ow theory, since in both cases the incremental stress±strain
relation is bilinear and continuous.

The increase in load beyond the bifurcation point is not observed for a true deformation theory of
plasticity that does not represent unloading. Such a true deformation theory is in essence a nonlinear
elastic material model7. For it the behaviour in the vicinity of the bifurcation point is that of an
imperfection sensitive elastic structure with a symmetric bifurcation point (Koiter, 1945; Budiansky,

Fig. 3. Load-axial shortening relations for pipes with sinusoidal imperfections under axial compression from the ICU deformation

theory of plasticity.

7 The ``true'' deformation theory of plasticity used here employs the same incremental moduli as the ICU deformation theory

moduli for plastic loading irrespective of whether the equivalent von Mises stress is increasing or decreasing. As such this ``true''

deformation theory strictly represents a nonlinear material only in the small strain range. In the ®nite strain range when changes in

the principal axes of loading are involved this ``true'' deformation theory represents a hypoelastic rather than a hyperelastic ma-

terial model.
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1974; Triantafyllidis and Peek, 1992). As such, the load on the bifurcated branch starts to drop
immediately, and the load-carrying capacity of the imperfect structure can never exceed the bifurcation
load. This is illustrated in Fig. 5, where the load-shortening relations for the ICU and true deformation

Fig. 4. Load-axial shortening relations for pipes with sinusoidal imperfections under axial compression from the ¯ow theory of

plasticity.

Fig. 5. Comparison of load-axial shortening relations for ICU and true deformation theories of plasticity in the presence of a small

�a=t � 0:001� imperfection.
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theories are compared for the case when a small imperfection is involved, so that the solutions are quite
close to the bifurcated solution for the perfect system. The observed change in slope of the load-
shortening curve at the transition from the principal to the bifurcated solution branch is characteristic of
a symmetric bifurcation in an elastic system (Koiter, 1945; Budiansky, 1974; Triantafyllidis and Peek,
1992). This change in slope does not occur for the case of plastic buckling where the direction of the
bifurcated solution is determined by a neutral loading condition (Hutchinson, 1974).

In contrast to the deformation theories, for the ¯ow theory, no convergence of the solutions as the
imperfections become vanishingly small is observed up to imperfections as small as a/t = 0.0001 (Fig. 4).
Instead the axial strain at which the solution for the imperfect system veers away from the principal
solution keeps on increasing by a roughly equal amount each time the size of the imperfection is
decreased by a factor of 10. This behaviour can be seen more clearly on a logarithmic plot showing the
growth of the imperfections for the ¯ow theory (Fig. 6). It shows that very small imperfections grow
roughly exponentially with increasing axial shortening. When one considers that the bifurcation strain is
over 50% for the ¯ow theory (as opposed to 2.7% for the deformation theory), it is not surprising that
no convergence to the bifurcated solution for the perfect cylinder is observed. An imperfection
su�ciently small to reach a state close to the bifurcation point would have to be very small indeed.
Speci®cally by roughly extrapolating from Fig. 6 the initial imperfection would have to be as small as
a=t � 10ÿ15 to be able to reach an axial shortening of around 50% without buckling.

The limit point (where the maximum load is reached) is of particular interest, not only because it
provides the load-carrying capacity of the tube, but also because it describes the point beyond which
localisation of deformations will occur, if the pipe tested is several half wavelengths long. The curves in
Figs. 3 and 4 all stop at the limit point. The load and axial shortening at this point are also plotted in
Figs. 7 and 8, respectively, for all three plasticity theories considered. The level of the bifurcation stress
and strain are also indicated in Figs. 7 and 8 by dashed lines. As expected (Koiter, 1945; Budiansky,
1974; Hutchinson, 1974; Triantafyllidis and Peek, 1992) convergence of the limit point for the imperfect

Fig. 6. Growth of imperfections of various sizes from ¯ow theory of plasticity during axial loading of a cylinder.
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system to the bifurcation point as the imperfection becomes vanishingly small only occurs for the true
deformation theory. For imperfections exceeding about 10% of the wall thickness the ¯ow and
deformation theories yield much the same results. Also there is no unloading for such larger imperfections,

Fig. 8. E�ect of imperfection amplitude on axial shortening at limit point for a pipe with D=t � 20 under axial compression accord-

ing to ¯ow and ICU deformation theory of plasticity.

Fig. 7. E�ect of imperfection amplitude on load-carrying capacity (nominal stress at limit point) for a D=t � 20 pipe.
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so the di�erence between the true and ICU deformation theories disappears completely. For smaller
imperfections, however, the di�erences become signi®cant, and for the ¯ow theory the limit point stress
and strain continue to grow approximately linearly with the logarithm of the initial imperfection size.

6. Comparison to test results

In addition to comparing buckling predictions for the imperfect system with the ¯ow and deformation
theories, it is essential to see where the experimental results lie in relation to these predictions. For this
purpose a set of test results is needed for which the imperfections are su�ciently well known, so that
they can be included in the ®nite element model. Such a set of results was recently obtained by Shell
UK. A total of four pipes of 12-in. nominal diameter were tested under axial load and internal pressure.
The names of the specimen and test parameters are shown in Table 1. All pipes satis®ed the API 5L
grade X65 speci®cation, and had an initial wall thickness of about 34 mm. However, the specimen were
machined down to about 27 mm wall thickness over a 650 mm-long test section, giving them an outer-
diameter-to-thickness ratio of about D/t = 10 over the test section. The transition from the test section
to the full wall thickness occurs over a length of about 75 mm. This transition in wall thickness acts as

Fig. 9. Stress±strain curves for specimen NTNP (tested at room temperature). The ``®tted'' curve is the one used in the ®nite el-

ement analyses. Tension test results are from round bar specimen, and the compression test is performed on a 25 mm diameter and

40 mm long solid cylinder.

Table 1

Test parameters for wrinkling tests on pressurised 12-in. carbon steel pipes

Specimen name Temperature (8C) Internal pressure (psi) Maximum applied axial shortening (%)

NTNP Room No pressure 5.89

HTNP 160 No pressure 6.26

HTLP 160 3410 6.06

HTHP 160 7120 6.12
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the imperfection that induces wrinkling type deformations. The wall thickness increases by a factor of
about 1.3 over the transition.

Measured stress±strain curves are shown in Figs. 9 and 10, for coupon tests performed at room
temperature and at 1608C, respectively. These ®gures also show the stress±strain curves used in the ®nite
element analyses of the specimen as grey dotted lines, which are labelled ``®tted'' curves. Indeed in view
of the point-to-point variabilities in yield stress observed in the pipe, the ``®tted'' curves were scaled to
match the observed yield stress during the wrinkling tests. The strain hardening portion of the ®tted
tests is represented by a Ramberg±Osgood type curve (Eq. (13)), with an exponent of n � 7:5 for the
tests at room temperature and n � 8:5 for the tests at elevated temperature. It is apparent from Figs. 9
and 10, that these values of the exponent provide a reasonable ®t to the measured stress±strain curves in
range from 2% to 8% strain. (This is true even though the ®tted curves imply a strain at ultimate of 1/
n, which exceeds the observed strains of about 10%, as indicated in Figs. 9 and 10.)

All tests proceeded to about 6% axial shortening with increasing axial load, at which point the test
was stopped, the specimen unloaded, and the residual plastic deformations measured. Exactly the same
procedure was simulated in the ®nite element analysis, using axisymmetric ®nite elements and matching
the actual (measured) geometry of each of the test specimen. Indeed, to make the results comparable,
the axial shortening during the ®nite element analysis was monitored over the same gauge length that
was used in the tests8.
The comparisons of the ®nal calculated and measured9 residual plastic deformations are shown in

Fig. 10. Stress±strain curves for the specimen tested at elevated temperature. The stress±strain tests were performed at the same

temperature of 1608C as the wrinkling test on the specimen. The ``®tted'' curves are those used in the ®nite element analysis. For

these the yield stress is adjusted to match the observed yielding load of the specimen during the wrinkling test.

8 This axial shortening was measured over an 800 mm-long gauge length, which includes the 650 mm-long test section. This

means that the axial shortening over the test section can be expected to be somewhat higher, but not by more than a factor of 1.2,

which would imply a maximum axial shortening of about 7.2% over the test section.
9 The measured radial de¯ection is determined from the growth in diameter in various azimuthal directions, and at each side of

the plane of symmetry. That way the maximum, minimum and average values plotted for each value of the axial coordinate were

determined.
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Figs. 11±14. Therein the axial coordinate takes a value of x � 600 mm at the centre of the test section,
which is taken as a plane of symmetry for the analysis. The transition in wall thickness occurs between
x � 200 and x � 275 mm. Clearly wrinkling-type deformations are induced by the change in wall

Fig. 12. Comparison of the calculated and measured post-test radial de¯ections as a function of the axial coordinate for specimen

HTNP. Test was performed at a temperature of 1608C, without internal pressure. The axial coordinate has its origin at the end-

cap. Only half of the specimen is drawn, but maxima and minima include readings from both sides.

Fig. 11. Comparison of the calculated and measured post-test radial de¯ection as a function of the axial coordinate for specimen

NTNP. Test was performed at room temperature without internal pressure. The axial coordinate has its origin at the end-cap.

Only half of the specimen is covered, but maxima and minima include test readings from both sides.
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thickness. This degree of wrinkling type deformation is overpredicted by the ICU deformation theory in

all cases, but it is underpredicted by the ¯ow theory for specimen HTNP and HTLP, whereas for the

other specimen (NTNP and HTHP), the ¯ow theory predicts about the correct amount of wrinkling

Fig. 13. Comparison of calculated and measured post-test radial de¯ection as a function of the axial coordinate for specimen

HTLP. Test was performed at a temperature of 1608C with an internal pressure of 3410 psi. The axial coordinate has its origin at

the end-cap. Only half of the specimen is drawn, but maxima and minima include readings from both sides.

Fig. 14. Comparison of calculated and measured post-test radial de¯ection as a function of the axial coordinate for specimen

HTHP. Test was performed at a temperature of 1608C with an internal pressure of 7120 psi. The axial coordinate has its origin at

the end-cap. Only half of the specimen is drawn, but maxima & minima include readings from both sides.
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type deformation. On the whole the ¯ow theory provides closer predictions of the wrinkling type
deformations for these tests.

Load-shortening relations for the test and the analyses are compared in Figs. 15 and 16. In both cases
the test results, and those from the ¯ow and ICU deformation theories are virtually indistinguishable up

Fig. 15. Axial load-shortening relations over 800 mm-long gauge length for specimen NTNP.

Fig. 16. Axial load-shortening relations over 800 mm-long gauge length for specimen HTHP.
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to about 4% axial shortening. Beyond that the test and ¯ow theory results are still in excellent
agreement, but the ICU deformation theory yields somewhat lower loads. This is consistent with the
larger wrinkling type deformations for the ICU deformation theory.

The very close agreement between theory and test results in Figs. 15 and 16 was achieved by to some
extent scaling of the stress-plastic strain curves. Nevertheless, the ``®tted'' stress±strain curves thus
obtained fall quite close to the measured stress±strain data (see Figs. 9 and 10). They fall especially close
to the results of the compression test for the case of the unpressurised specimen (NTNP and HTNP).
Also the Ramberg±Osgood exponent for the ®tted stress±strain curves was determined from the stress±
strain data. Therefore, the matching of load-shortening curves in Figs. 15 and 16 is not entirely
fabricated. The prediction of the shapes of the curves is good, even when it is based only on the stress±
strain data from axial coupon tension tests. (Unfortunately the compression tests could not be carried to
strains above 2% because of lateral buckling of the specimen. These tests were carried out on solid
cylindrical specimen with a length to diameter ratio of about 1.6. The axial strains were measured at
four evenly spaced locations around the circumference at the middle of the specimen, so that it could be
veri®ed that essentially no bending of the specimen occurred during the tests.)

The e�ect of pressurisation on the ®tted stress±strain curves can be seen in Fig. 10 by comparing the
®tted curves for specimen HTNP, HTLP, and HTHP. The higher the internal pressure, the lower the
®tted curve. Speci®cally the drop of the ®tted stress±strain curve below that for the unpressurised case
(HTNP) is about 10 MPa for the low internal pressure (HTLP), and 50 MPa for the high pressure case
(HTHP). Those di�erences suggest that the theory based on the von Mises yield criterion, somewhat
underestimates the reduction in axial compressive stress at yield due to the internal pressure. Indeed, the
observed behaviour lies in between that for the von Mises and Tresca yield criteria, with the weighting
factors being about 80% von Mises and 20% Tresca for HTLP, and 50%/50% for HTHP ( based on
the assumption that these observed di�erences in the ®tted stress±strain curves are entirely due to the
shape of the yield surface).

The e�ect of unloading and reloading on the test results is also of some interest. This occurred at
about 5% axial shortening (see Figs. 15 and 16). When the specimen was reloaded, its yield strength
seems to have increased slightly beyond the maximum load the specimen had experienced previously.
This is probably a result of a change in material properties due to di�usion of solution elements such as
nitrogen within the steel. Such elements are known to di�use into interstitial locations created by the
dislocations. That way they inhibit the further propagation of the dislocation, giving rise to the observed
increase in strength. However, once further plastic deformation causes the dislocation to move away
from the blocking interstitial atom, the behaviour of the steel is back to what it would have been
without the unloading and reloading event. At higher temperature the di�usion of the interstitial
elements is faster, leading to a more pronounced e�ect. This temperature dependence of the e�ect is also
observed when comparing Figs. 15 and 16.

7. Conclusions

A simple way to include unloading in a deformation theory of plasticity is given, by which continuity
of the incremental stress±strain relations is maintained. This deformation theory is, therefore, referred to
as the ICU deformation theory, since the material model is Incrementally Continuous and includes
Unloading. This incremental continuity could only be achieved by allowing plastic deformations within
the yield surface. (Such plastic deformations are associated with rotation of the plastic strain tensor in
line with rotations of the deviatoric stress tensor). A parameter m is introduced that governs the extent
to which such plastic deformations are possible within the yield surface. (For larger m the possibility of
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plastic deformation decreases more rapidly as the stress state moves towards the interior of the yield
surface.) The resulting theory has the following characteristics:

1. For proportional loading, unloading and reverse loading (i.e. when the stress state is always on the
same straight line through the origin in stress space), it coincides with the ¯ow theory of plasticity.
This means that for problems such as the Euler buckling of a column (where the stresses act always
along the same axial direction, but may change from tension to compression) the new theory will give
the same results as the ¯ow theory, for bifurcation buckling as well as postbuckling and imperfection
sensitivity. (In contrast the standard deformation theory is not suitable for such postbuckling
analysis, since elastic unloading does already occur in the postbuckling regime before the maximum
load carrying capacity is reached.)

2. For calculations of incipient buckling (or necking) by bifurcation of the solution path, the ICU
deformation theory gives the same results as the standard deformation theory, which is known to be
generally in better agreement with the experimental data.

3. As for the ¯ow theory of plasticity, the ICU deformation theory is incrementally continuous and
bilinear. As a result no extra di�culties are expected in the numerical solution procedures.
Furthermore Hill's general theory of bifurcation remains applicable, and can be used to determine the
direction of the bifurcated solution branches that emanate at a bifurcation point.

Another advantage of the approach is that it can be implemented with minimal changes to an existing
elastic predictor±radial return algorithm for the J2 ¯ow theory of plasticity. Indeed, only the calculation
of the elastic predictor is changed.

Caution must be exerted when the prebifurcation behaviour involves non-proportional loading (such
as for the puckering instabilities in the forming of a hemispherical cup (Triantafyllidis, 1985), or bending
of pipes, where the prebifurcation nonlinearity arises due to ovalisation of the cross-section), since in
absence of unloading the ICU deformation theory still does not include any path dependent e�ects.

The approach is particularly useful in design situations where the exact manner in which the yield
surface will evolve is not known, but one would like to obtain a lower bound to the load or
deformation capacity of the system in addition to an upper bound from the J2 ¯ow theory.
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Appendix A. Implementation of the ICU deformation theory

The incremental stress±strain relations of the ¯ow theory of plasticity can be written as

T
r
� L:

ÿ
Dÿ _lR

�
, L � 2G

�
I � n

1ÿ 2n
11

�
�A1�

in which Ixs is the fourth order identity tensor, and l is de®ned by the requirements that either
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_l > 0 and Q � Q0�l� �A2�
for plastic loading, or

_l � 0 and QRQ0�l� �A3�
for elastic behaviour. All other quantities in Eqs. (A1)±(A3) are de®ned in the main body of this paper.

Eqs. (A1)±(A3) also apply for the ICU deformation theory, except that in this case the elastic
incremental sti�ness tensor L is replaced by a tensor

Les � 1

3

�
E

1ÿ 2n
ÿ 2GS

�
11� 2GSI � 4

3
�Gÿ GS �RR �A4�

which represents elastic moduli normal to the yield surface but secant moduli tangent to the yield
surface. Thus, ICU deformation theory is de®ned by incremental relation

T
r
� Les:

ÿ
Dÿ _lR

�
�A5�

together with Eqs. (A2) and (A3) providing the additional conditions for plastic loading and unloading,
respectively.

To obtain the corresponding relations in component form, the Kirchho� stress tensor, and the rate of
deformation tensor are written in terms of convected covariant basis vectors gi and their contravariant
counterparts gi in the form,

T � T ijgigj, D � Dklg
kgl �A6�

The Jauman rate of the tensor T can then be written as

T
r
� T

o

ÿ D � T ÿ T:D �A7�

in which

T
o

� _Tijgigj �A8�

is the convective rate of the Kirchho� stress tensor T. Using these results to write the incremental
stress±strain relations of the ICU deformation theory in component form yields

_T
ij �

ÿ
Lijkl

es ÿ T ikg jl ÿ T jkgil
�
Dkl ÿ 2G_lRij �A9�

in which a dot placed above any quantity denotes di�erentiation with respect to time, and

Lijkl
es �

1

3

�
E

1ÿ 2n
ÿ 2GS

�
gijgkl � 2GSg

ikg jl � 4

3
�Gÿ GS �RijRkl �A10�

Rij � 3

2Q
Sij, Sij � T ij ÿ pgij, p � 1

3
T klglk, Q �

�������������������������
3

2
SijgikgjlSkl

r
�A11�

gij � gi:gxsj,
�
gij
�
� �gij �ÿ1 �A12�
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Finally the components of the rate of deformation tensor D � Dklg
kgl can be written as

Dkl � _Ekl � 1

2
_gkl �A13�

in which Ekl are the components of the Green±Lagrange strain tensor.
To obtain relations that can be applied for a ®nite increment, the following approximations are made:

1. the time derivatives appearing in Eq. (A9) are replaced by the change in the corresponding quantity
over the increment;

2. the metric coe�cients and gij and gij are always evaluated at the end of the increment, but the
components of the stress tensor and the moduli are evaluated at the beginning of the increment,
except that

3. the tensor components Rij in Eq. (A9) are evaluated at the end of the increment.

In this manner one obtains,

�T ij �1� T ij
es ÿ 2G�Rij �1Dl �A14�

where

T ij
es � �T ij �0�

�
Lijkl

es ÿ T ikg jl ÿ T jkgil
�
0&1DEkl �A15�

is an elastic predictor value for the stresses, and for any quantity or expression (.), ��:��0 denotes the
value at the beginning of the increment, ��:��1 denotes the value at the end of the increment,

D�:� � ��:��
1
ÿ��:��

0
�A16�

denotes the change in value over the increment, and ��:��0 & 1 indicates that the stresses and material
moduli enclosed in the brackets are to be evaluated at the beginning of the increment, but the metric
coe�cients are to be evaluated at the end of the increment.

It follows from Eq. (A14) that radial return applies, and furthermore, for plastic loading the
increment in accumulated plastic strain l is determined from,

Q0

ÿ�l�0�Dl�� 3GDl � Qes �A17�
in which

Qes �
�������������������������������
3

2
Sij

es�gikgjl �1Skl
es

r
�A18�

Sij
es � T ij

es ÿ pesgij, pes � 1

3
T kl

esglk �A19�

Finally, having obtained the plastic strain increment, Dl, the stress increment is given by

�T ij �1� T ij
es ÿ

3GDl
Qes

Sij
es �A20�

Thus, the only di�erence between the implementation of this ICU deformation theory of plasticity and a
conventional ¯ow theory lies in that the elastic predictor value of the stress is calculated using
incremental moduli Les rather than L.
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In summary the procedure to be followed for every increment is as follows:

1. Calculate the elastic predictor stresses from Eq. (A15).
2. Calculate Qes from Eqs. (A18) and (A19). If Qes > Q0��l�0� solve Eq. (A17) for the plastic strain

increment Dl (as is done for the ¯ow theory). Otherwise Dl � 0:
3. Compute the new stress state from Eq. (A20).

By virtue of the manner in which the time discretisation is constructed here, the accumulated error
should be of the order of the size of the increment, and will therefore become vanishingly small as the
size of the increments is decreased to zero. This convergence of the time discretisation has also been
veri®ed numerically for one of the examples of Section 5.

In order to calculate the tangent sti�ness matrix, the incremental relations written in the form

_T
ij � Lijkl

ts
_Ekl �for plastic loading� �A21a�

� Lijkl
es

_Ekl �for elastic unloading� �A21b�
where Lijkl

es is given in Eq. (A10), and

Lijkl
ts � Lijkl

es ÿ
4G 2

H� 3G
RijRkl � 1

3

�
E

1ÿ 2n
ÿ 2GS

�
gijgkl � 2GSg

ikg jl � 4

3
�GT ÿ GS �RijRkl �A22�

It is known that using consistent incremental moduli can lead to faster convergence of the Newton
iteration type solution schemes used in the ®nite element calculations. However, for the algorithm
described here the consistent sti�ness matrix is not symmetric. In view of this, and of the e�ort involved
in constructing expressions for the consistent sti�nesses, the symmetric incremental sti�ness matrix
de®ned by Eqs. (A21a, b), rather than the consistent sti�nesses are used in the ®nite element
computations. For su�ciently small steps this still leads to rapid convergence of the Newton iterations
at each increment. (Note that although use of the consistent matrices can result in more rapid
convergence of the Newton iterations, it does not improve the accuracy of the results, which are still
dominated by discretisation errors in time and in space.)
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